
Language Models and Software Development: Multiple
Opportunities and Challenges

Julien Perez

March 29, 2025

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 1 / 62

Introduction

Large Language Models (LLMs) are transforming software
programming by supporting tasks such as code generation, test suite
creation, and code analysis.

These models leverage vast datasets and recent architectures to
enhance developer productivity and software quality.

This talk discusses:

Fundamentals of LLMs and their application to programming.
Recent developments in code-related tasks.
Safety challenges and ethical considerations.
Future potential and some current research.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 2 / 62

Julien Perez

Associate Professor, HDR
EPITA: Engineering School in Computer Science
AI, Machine Learning and Differential Programming

Research Director
IONIS Education Group
Research Centre of AI for Pedagogy

Research
Alignement of Generative models
Focus on CodeLLMs
Applications to Education and Pedagogy

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 3 / 62

Historical Context of LLMs in Programming

Early NLP: Rule-based systems and statistical models (e.g., n-grams)
for text processing.

Deep Learning: RNNs and LSTMs enabled sequence modeling but
struggled with long dependencies.

Transformers (2017): Introduced by Vaswani et al., revolutionizing
NLP with scalable architectures [1].

LLMs in Code: Codex (2021) and GitHub Copilot (2021) marked
the shift to programming applications.

Today: LLMs generate, analyze, and debug code, integrating into
development workflows. Considered to be useful tools to teach
computer science and software development.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 4 / 62

Historical Context of LLMs in Programming

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 5 / 62

Presentation Outline

1 Introduction

2 Fundamentals of LLMs

3 Recent Developments in Programming

4 Advanced Techniques and Future Directions

5 Safety, Ethics, and Challenges

6 LLMs as a Programming Paradigm

7 Conclusion

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 6 / 62

Terminology and Fundamental Technology

Large Language Models (LLMs): Neural networks trained on
massive datasets to predict and generate text or code.

Tokenization: Splits text/code into tokens (e.g., words, subwords)
using techniques like Byte Pair Encoding (BPE).

Embeddings: Dense vectors capturing semantic and syntactic
meaning of tokens.

Transformers: Architecture using self-attention to process sequences
efficiently [1].

Pre-Mid-Post Training: Pre-trained on general corpora, extend the
context-length in mid-training, then aligned for specific tasks like
code generation.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 7 / 62

LLM Architectures

Encoder-Only (e.g., BERT): Bidirectional
context, ideal for code understanding and
analysis.

Decoder-Only (e.g., GPT): Autoregressive,
excels at code generation from prompts.

Encoder-Decoder (e.g., T5): Combines
strengths for tasks like code translation.

Relevance to Programming: Choice depends
on task—generation, comprehension, or
transformation. So far decoder-only seems to
become the norm.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 8 / 62

Mathematical Foundations: Self-Attention

Input: Sequence X ∈ Rn×d (n tokens, d dimensions).

Queries, Keys, Values:

Q = XWQ , K = XWK , V = XW V ,

where WQ ,WK ,W V ∈ Rd×dk .

Scores:

Scores =
QK⊤
√
dk

,

scaled to prevent large values.

Output:

Attention(Q,K ,V) = softmax

(
QK⊤
√
dk

)
V .

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 9 / 62

Mathematical Foundations: Multi-Head Attention

Purpose: Captures diverse relationships by computing attention in
parallel heads.

Formulation:

MultiHead(Q,K ,V) = Concat(head1, . . . , headh)W
O ,

where headi = Attention(QWQ
i ,KWK

i ,VW V
i).

Advantage: Enhances model capacity and robustness.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 10 / 62

Mathematical Foundations: Positional Encodings I

Need: Transformers lack inherent order; positional encodings provide
sequence context. Sinusoidal Positional Encoding:

Formulation:

PE(pos,2i) = sin
(pos

100002i/d

)
, PE(pos,2i+1) = cos

(pos

100002i/d

)
.

Application: Added to token embeddings to incorporate position
information.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 11 / 62

Mathematical Foundations: Positional Encodings II

Rotary Position Embedding (RoPE):

Concept: Encodes absolute positions using a rotation matrix,
naturally incorporating relative position information.

Advantages:

Seamlessly integrates with self-attention mechanisms.
Provides flexibility for varying sequence lengths.
Enhances the model’s ability to capture relative positional
dependencies.

Application: Applied within the self-attention mechanism to improve
position awareness.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 12 / 62

Fundamental Technology in Programming

Training Data: Diverse codebases (e.g., GitHub) teach syntax,
semantics, and patterns.

Fine-tuning: Adapts models for tasks like code completion, testing,
and review.

Challenges:
Multi-language support (e.g., Python vs. C++).
Contextual understanding (e.g., project dependencies).

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 13 / 62

Dataset Collection and Curation

Sources: Massive corpora from repositories (e.g., GitHub, GitLab,
Stack Overflow) with millions of lines of code.

Diversity: Covers languages (Python, Java, C++, JavaScript),
paradigms (OOP, functional), and domains (web, AI, systems).

Natural Language Pairing: Inline comments, docstrings, and
documentation (e.g., "Sorts an array in ascending order")
link code to intent.

Synthetic Data: Generated code-comment pairs to address
underrepresented patterns or edge cases.

Data Sampling: Balancing across languages, paradigms, and
complexity levels to ensure generalization and avoid biases towards
popular patterns or languages.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 14 / 62

Preprocessing and Tokenization

Code-Specific Tokenization: Treats code as structured sequences,
preserving operators (+, ;), keywords (def, class), and indentation.

Normalization: Standardizes formatting (e.g., removing extra
whitespace) while retaining functional equivalence.

Multi-Language Handling: Embeds language tags (e.g., [PYTHON],
[JAVA]) or uses separate token vocabularies.

Challenges: Balancing syntax preservation with generalization across
languages.

Example: Tokenized Python line: def calculate(x): → [def,

calculate, (, x,), :].

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 15 / 62

Pretraining Phase

Unsupervised Learning: Model learns statistical patterns from raw
codebases without explicit labels.

Code Patterns: Common structures (e.g., loops, conditionals),
naming conventions (e.g., camelCase, snake case).

Cross-Modal Alignment: Pairs code with natural language (e.g.,
"Write a sorting function" → sorted(list)).

Example: Predict next token in: for i in range(→ 10).

Goal: Build a general-purpose code understanding before
task-specific tuning.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 16 / 62

Middle-Chunk Prediction (Infill): Concept

Definition: Predict a missing code segment given prefix and suffix,
unlike sequential generation.

Real-World Use: Completing function bodies, mid-line suggestions
in IDEs (e.g., VS Code).

Why It Matters: Mirrors non-linear coding workflows.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 17 / 62

Middle-Chunk Prediction: Training Details

Data Prep: Mask random code sections, provide prefix/suffix (e.g.,
mask result = a + b).

Objective: Maximize probability of correct infill given bidirectional
context.

Architecture: May use bidirectional attention (BERT-like) or causal
transformers with context markers (e.g., <prefix>, <infill>).

Challenges: Ambiguity (multiple valid infills), context dependency.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 18 / 62

Fine-Tuning / Post-Training Phase

Task-Specific Datasets: Curated for code completion, bug fixing, or
test generation.

Reinforcement Learning with Human Feedback (RLHF):
Developers rate outputs, improving readability and correctness.

Reinforcement Learning from Code Execution (RLCE): Models
are trained to optimize outputs based on successful code execution
and performance metrics.

Domain Specialization: Tuning for niches (e.g., Django for web, C
for embedded systems).

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 19 / 62

Reinforcement Learning Approaches: RLHF & DPO

RLHF Concept: Align LLMs with human

preferences using feedback.

Collect human ratings on outputs.
Train a reward model r(s, a) to
predict preferences.
Optimize policy using RL
algorithms (e.g., PPO).

Direct Policy Optimization (DPO):

Formulation:
π∗(a|s) ∝ exp(r(s, a))
Benefit: Achieves stable, efficient
training without iterative
sampling.

Outcome: Generated code better aligns with
developer intent.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 20 / 62

RL from Code Execution & Verifiable Rewards for LLMs

Concept: Use execution feedback, test
outcomes, as reward signals.

1 Execute code and collect metrics
(pass/fail, performance, speed).

2 Define reward r(s, a) based on these
outcomes.

3 Fine-tune LLMs to generate higher-quality,
more efficient code.

DeepSeek Verifiable Reward Approach:

Integrates static analysis with dynamic
testing for robust reward signals.

Enhances trustworthiness and alignment of
generated code with desired specifications.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 21 / 62

Evaluation Metrics

Functional Correctness: Test with execution (e.g., does
factorial(5) return 120?).

Code Quality: Assess readability (e.g., PEP 8 compliance), efficiency
(e.g., O(n) vs. O(n²)).
BLEU/Edit Distance: Compare to reference code, though less
emphasized than functionality.

Infill-Specific: Exact match or equivalence for middle-chunk
predictions.

Example: Generated vs. expected output for a sorting function.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 22 / 62

Handling Context and Dependencies

Long Context Windows: Process entire files or repositories (e.g.,
4096 tokens).

Library Awareness: Recognize popular APIs (e.g., numpy.array,
tensorflow.keras).

Project-Level Reasoning: Understand imports, class definitions
across files.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 23 / 62

Handling Context and Dependencies

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 24 / 62

Handling Context and Dependencies

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 25 / 62

Handling Context and Dependencies

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 26 / 62

Continuous Learning

Updating Knowledge: Incorporate new languages (e.g., Rust
updates) or frameworks (e.g., Python 3.11 features).

Community Feedback: Integrate developer corrections into training
loops.

Goal: Keep models relevant as software ecosystems evolve.

Example: Adapt to new syntax like Python’s match-case (3.10+).

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 27 / 62

Recent Developments: Code Generation

Tools: GitHub Copilot, CodeBERT offer real-time suggestions from
natural language.

Study: Zhang et al. (2023) evaluated 60+ LLMs, showing high
functional accuracy [2].

Example: Prompt ”sort an array” yields Python’s sorted() or
Java’s Arrays.sort().

Limitations: Struggles with complex logic or project-specific
conventions.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 28 / 62

Recent Developments: Test Suite Creation

Research: Xu et al. (2023) showed Codex generating JUnit tests
with high coverage [3].

Tools: Rasheed et al. (2024) automated test scenarios with LLMs [4].

Benefits: Reduces manual testing effort, enhances reliability.

Challenges: Ensuring edge case coverage and test correctness.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 29 / 62

Recent Developments: Code Analysis

Evaluation: Fang et al. (2024) tested LLMs for bug detection and
review [5].

Tools: Tabnine, Amazon Q Developer integrate into IDEs.

Applications: Identifies memory leaks, suggests optimizations, design
choices.

Limitations: Difficulty with obfuscated or highly complex code.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 30 / 62

Code Retrieval and Code Similarity

Tasks

Code Retrieval: Identifying and fetching code snippets that match a given query or
perform a specific function.

Code Similarity: Assessing the degree to which two code snippets are functionally or
syntactically alike.

Challenges

Variability in coding styles and implementations.

Presence of semantically similar code with different syntactic structures.

Contrastive Code Representation Learning

Self-supervised method for learning semantic representations of code.

Generates functionally equivalent but syntactically diverse code variants using automated
transformations.

Trains models to recognize functionally similar code among numerous non-equivalent
distractors.

Demonstrates improvements in tasks like code summarization and type inference.

1

1Jain, P., Jain, A., Zhang, T., Abbeel, P., Gonzalez, J. E., and Stoica, I. (2020).
Contrastive Code Representation Learning. arXiv preprint arXiv:2007.04973.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 31 / 62

Evaluation Metrics

BLEU: Measures code generation similarity to references.

Test Coverage: Assesses thoroughness of test suites.

Precision/Recall: Evaluates code analysis accuracy.

CodeBLEU: Tailored metric for code syntax and semantics.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 32 / 62

Benchmarks

HumanEval: 164 coding problems; Codex scores 72% [15].

CodeXGLUE: Multi-task suite for code-related tasks.

MBPP: Tests functional correctness across languages.

CRUXEval: 800 Python functions with input-output pairs, assessing
code reasoning and execution.

Significance: Standardizes performance assessment.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 33 / 62

Human-AI Collaboration

Role: LLMs act as co-pilots, assisting developers by refining code through
iterative natural language prompting.

Tools like GitHub Copilot integrate seamlessly into IDEs, offering
context-aware suggestions.

”Vibe coding” shifts role to guiding and refining AI-generated code from
natural language descriptions.

Impact: GitHub’s 2022 study found Copilot boosts coding speed by 55%,
reducing task completion time significantly.

Particularly effective for repetitive tasks (e.g., boilerplate code) and
prototyping.

Enhances productivity for both novice and expert programmers.

Challenge: Validating AI-generated suggestions.

Risks include subtle bugs, insecure code, or misalignment with project
requirements.

Requires developers to maintain oversight, blending human expertise with AI
efficiency.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 34 / 62

... and there is the Vibe Coding thing

What is Vibe Coding?

AI-dependent programming technique.

Describe problems in natural language to
an AI model.

AI generates the corresponding software
code.

Shifts role from manual coding to guiding
and refining AI-generated code.

Enables individuals with limited
programming experience to create
software.

Pair-programming paradigm

Not the subject of this talk, but worth
checking

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 35 / 62

Introduction to Reasoning in LLMs

Overview:
LLMs (e.g., OpenAI O1, Deepseek-R1) demonstrate impressive
reasoning abilities.
Capable of logical deduction, commonsense reasoning, and solving
complex problems.

Key Feature:
They generate coherent, step-by-step reasoning to address queries.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 36 / 62

Mechanisms Enhancing Reasoning in LLMs

Chain-of-Thought Reinforcement

Encourages intermediate reasoning steps to
solve complex tasks.

Self-Consistency

Generates multiple reasoning paths and selects
the most consistent outcome.

Tree-of-Thought Reasoning

Explores multiple branches of reasoning to
yield more comprehensive solutions.

See more: Tree-of-Thought (arXiv)

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 37 / 62

https://arxiv.org/abs/2502.03671

LLMs in Software Development

Code Generation:
Converts natural language descriptions into executable code.
Assists with debugging, refactoring, and accelerating development.

Benefits:
Reduces manual coding effort and increases productivity.
Provides context-aware coding suggestions that improve code quality.

Reference: MIT News

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 38 / 62

https://news.mit.edu/2024/technique-improves-reasoning-capabilities-large-language-models-0614

Agentification: Planning and Tooling I

Agentification: Transforms LLMs into autonomous coding agents
capable of independently solving complex programming tasks.

Moves beyond passive suggestion tools (e.g., Copilot) to proactive
problem-solvers.
Example: An agent autonomously writes, tests, and refines a web app
backend from a high-level spec.

Planning: Involves structured decomposition of coding tasks into
manageable subtasks for systematic execution.

Mimics human problem-solving: break “build a login system” into
authentication, database setup, and UI steps.
Uses algorithms or heuristics to prioritize and sequence actions
effectively.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 39 / 62

Agentification: Planning and Tooling II

Tooling: Integrates LLMs with external tools (e.g., compilers, linters,
APIs) to enhance functionality.

Example: An LLM calls a testing framework to validate code, then
iterates based on results.

Bridges the gap between language generation and practical software
engineering needs.

Goal: Create a self-contained ecosystem where LLMs handle
end-to-end development processes.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 40 / 62

Agentification: Autonomous Code Generation I

CodeAgent: Integrates tools (e.g., linters, debuggers) for
repository-level code generation, addressing real-world challenges like
multi-file projects [9].

Features four strategies (e.g., ReAct, Tool-Planning) to optimize tool
usage and decision-making.
Example: Autonomously generates a full Python package with tests
and documentation from a spec.

AgentCoder: Employs a multi-agent system with specialized
roles—programmer, test designer, and executor—for collaborative
code synthesis [10].

Iterative process: Programmer writes code, test designer creates
validation suites, and executor refines based on feedback.
Outperforms single-agent models in complex tasks like API-driven
applications.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 41 / 62

Agentification: Autonomous Code Generation II

Benefit: Handles complex coding tasks autonomously, reducing
human intervention.

Tackles multi-step problems (e.g., database integration, UI
development) with minimal oversight.

Scales to enterprise-level projects, enhancing productivity and enabling
rapid prototyping.

Challenges: Ensuring agent coordination and avoiding infinite loops or
redundant actions.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 42 / 62

Tooling: Enhancing LLM Capabilities I

CodeAct: Facilitates dynamic code execution by consolidating LLM
actions into executable Python scripts, enabling real-time revision
[13].

Integrates with interpreters to run code, assess outputs, and adjust
based on results.
Example: Generates a script, tests it, and fixes errors (e.g., syntax or
logic bugs) iteratively.

TaskWeaver: A code-first agent framework that transforms user
requests into executable code with support for rich data structures
and plugins [14].

Handles complex tasks like data analysis by calling external libraries
(e.g., Pandas, NumPy).
Example: Converts “analyze sales data” into a Python script with
visualization outputs.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 43 / 62

Tooling: Enhancing LLM Capabilities II

Advantage: Boosts efficiency and precision in code generation and
analysis.

Reduces manual effort by automating validation and integration steps.

Enhances accuracy by leveraging domain-specific tools (e.g., testing
frameworks, version control).

Limitations: Dependency on tool reliability and compatibility with LLM
outputs.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 44 / 62

Multimodal Capabilities

Vision: Models like CLIP-ViT combine text and image processing to
interpret code-related diagrams (e.g., flowcharts, UML) and generate
corresponding code.

Example: Converting a database schema diagram into SQL table
definitions.
Enhances accessibility for visual learners and designers.

Voice: Voice-driven interfaces enable hands-free coding, e.g., saying
“write a for loop to sum numbers” prompts instant code generation.

Useful in accessibility contexts or multitasking scenarios (e.g., pair
programming).
Integrates with speech-to-text systems like Whisper.

Potential: Multimodal IDEs could merge text, voice, and visual
inputs for richer developer interaction.

Future vision: An IDE where developers sketch a UI, describe it vocally,
and receive a full codebase.
Challenges include input synchronization and error handling across
modalities.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 45 / 62

Safety: Correctness and Security I

Issues: Ensuring generated code is correct and secure remains a
significant challenge.

Functional Errors: LLMs may produce syntactically valid but logically
flawed code (e.g., off-by-one errors).
Backdoors: Li et al. (2024) highlight risks of malicious code injection
in LLM outputs, especially from unverified training data [6].
Example: A seemingly benign function could hide vulnerabilities like
SQL injection risks.

Mitigation: Robust strategies to address these risks include:

Fuzzing: Test code with random inputs to expose edge-case failures or
crashes.
Automated Testing: Generate and run unit tests to verify
functionality and security.
Code Audits: Manual or AI-assisted reviews to detect subtle issues
(e.g., insecure API calls).
Static Analysis: Scan for known vulnerability patterns before
deployment.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 46 / 62

Safety: Correctness and Security II

Privacy: Risks arise from training data leaks, exposing sensitive code
or user information.

Example: Copilot reproducing proprietary snippets from GitHub raises
legal and ethical concerns.

Mitigation: Data anonymization and synthetic training datasets.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 47 / 62

Safety: Ethics and Reliability I

Ethics: Ethical deployment of LLMs in programming involves
multiple dimensions:

Fairness: Ensuring equitable performance across languages and user
groups (e.g., avoiding bias toward popular frameworks).
Bias: Outputs may reflect training data skews, such as favoring
Western coding styles.
Privacy Concerns: Protecting developer data and intellectual property
during model training and inference.

Reliability: Maintaining consistent, trustworthy outputs is an ongoing
challenge.

Hallucinations: LLMs may generate plausible but incorrect code (e.g.,
nonexistent APIs) [7].
Over-alignment: Excessive tuning to human feedback can limit
creativity or adaptability.
Example: A model might reject valid but unconventional solutions due
to strict alignment.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 48 / 62

Safety: Ethics and Reliability II

Research: Over 200 open questions on alignment and safety have
been identified.

Topics include mitigating hallucinations, balancing alignment with
flexibility, and ensuring ethical use.

Calls for interdisciplinary efforts combining AI, software engineering,
and ethics.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 49 / 62

Legal and Intellectual Property Issues

Concern: Ownership of LLM-generated code is ambiguous—does it
belong to the developer, the model creator, or the training data
contributors?

Complicates copyright and patent claims in commercial software.
Raises questions about liability for bugs or vulnerabilities in
AI-generated code.

Case: The 2022 GitHub Copilot lawsuit alleges unauthorized reuse of
open-source code from GitHub repositories.

Plaintiffs argue Copilot violates licenses (e.g., GPL) by reproducing
code without attribution.
Highlights risks of training on public data without explicit consent.

Solutions:
Licensing Clarity: Define explicit terms for AI-generated outputs (e.g.,
MIT-style licenses).
Watermarking: Embed metadata in generated code to trace origins
and ownership.
Transparency: Disclose training data sources to mitigate legal risks.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 50 / 62

Bias in Code Generation

Source: Training data biases skew outputs, e.g., overrepresentation
of Python due to its prevalence on GitHub.

Reflects real-world usage but distorts model behavior.
Influenced by contributor demographics (e.g., Western,
English-speaking developers).

Effect: Underrepresentation of niche or older languages like Fortran,
COBOL, or Ada.

Limits utility in specialized domains (e.g., scientific computing, legacy
banking systems).
May reinforce outdated practices (e.g., imperative over functional
programming).

Mitigation:
Diverse Datasets: Include code from varied sources (e.g., academic
repos, non-English platforms).
Fairness Tools: Detect and adjust for bias in outputs (e.g., language
balance metrics).
Fine-tuning: Target underrepresented languages explicitly.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 51 / 62

Hybrid Approaches I

Method: Combines LLM strengths with traditional software
engineering techniques, such as static analysis, to leverage
complementary capabilities [8].

LLM Role: Generates initial code or suggests improvements based on
natural language understanding.

Static Analysis Role: Checks for syntax errors, type mismatches, or
security flaws (e.g., buffer overflows).

Formal Techniques: Symbolic execution or formal verification can
validate logic and invariants.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 52 / 62

Hybrid Approaches II

Goal: Filters out errors and enhances robustness in code generation
and analysis.

Reduces false positives (e.g., hallucinated code) by cross-verifying with
deterministic tools.

Improves reliability for safety-critical applications (e.g., aerospace,
healthcare software).

Challenges: Integrating diverse tools seamlessly and managing
computational overhead.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 53 / 62

Energy Efficiency and Environmental Impact

Issue: Training large-scale LLMs like GPT-3 consumes significant
energy, emitting approximately 192 tons of CO2, equivalent to the
carbon footprint of five cars over their lifetimes [17].

Training involves millions of GPU hours, often on energy-intensive data
centers powered by fossil fuels.
Inference (real-time use) also contributes to ongoing emissions,
especially in high-traffic tools like GitHub Copilot.

Solutions:
Model Distillation: Compress large models into smaller, efficient
versions with minimal performance loss.
Network Pruning: Remove redundant parameters to reduce
computational load.
Efficient Hardware: Leverage TPUs or low-power GPUs optimized for
AI workloads.
Green Computing: Use renewable energy sources for data centers.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 54 / 62

LLMs as a Core Programming Component

Beyond External Tools: Rather than treating LLMs as standalone
assistants (e.g., GitHub Copilot), consider embedding them into the
programming paradigm itself.

Analogous to garbage collectors: Seamless, language-level integration
automating repetitive or complex tasks.
Example: LLMs could dynamically generate code paths or optimize
logic during compilation or runtime.

Backend for Languages: Use LLMs as the runtime interpreter or
compiler backend for a new class of languages.

Instead of rigid syntax, developers write intent-driven pseudocode;
LLMs translate it to executable instructions.
Reduces syntactic overhead, aligning programming closer to human
reasoning.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 55 / 62

Revisiting Logic Programming

Revival Potential: Logic programming (e.g., Prolog) could see a
resurgence as it aligns with LLMs’ strengths more naturally than
imperative languages like Python.

Declarative paradigm—based on rules and inference—mirrors LLMs’
ability to reason from natural language constraints.
Example: Developers specify ”what” (goals/constraints) in text; LLMs
deduce ”how,” akin to logic-based resolution.

Adaptability to LLM Control: Unlike imperative programming’s
step-by-step control flow, logic programming’s abstraction may better
harness LLMs’ probabilistic reasoning.

Python’s explicit instructions clash with LLMs’ tendency to interpret
intent; Prolog-like systems could bridge this gap.
Hybrid approach: LLMs generate logic rules dynamically, paired with
formal solvers for deterministic outcomes (Li et al., 2024).

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 56 / 62

Agentification and Autonomy

Agentification: Equip LLMs with agency to act as autonomous
components within the development lifecycle.

Example: An LLM ”agent” could independently refactor code, manage
dependencies, or propose optimizations based on context.
Builds on works like CodeAgent (Zhang et al., 2024) and AgentCoder
(Huang et al., 2023).

Implications: Shifts programming from manual orchestration to
supervising intelligent agents.

Developers define goals (e.g., ”implement a secure API”); LLM agents
execute and iterate.
Challenges: Ensuring agent reliability, avoiding unintended behaviors
(e.g., infinite loops).

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 57 / 62

Challenges and Opportunities

Challenges:
Correctness: LLMs’ non-deterministic outputs require runtime
validation or formal verification layers.
Performance: Real-time LLM inference in compilers or interpreters may
introduce latency.
Control : Developers must retain authority over LLM-driven decisions in
the paradigm.

Opportunities:
Abstraction: Elevates programming to higher-level intent, reducing
boilerplate and errors.
Adaptability : LLMs could evolve with project needs, learning
domain-specific patterns on-the-fly.
Accessibility : Opens doors to novel languages where LLMs bridge
human intent and machine execution.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 58 / 62

Conclusion I

Transformative Impact: Large Language Models (LLMs) are
revolutionizing software programming by automating critical tasks,
fundamentally reshaping development workflows.

From generating functional code to streamlining debugging, LLMs
enhance productivity and creativity across skill levels.
Tools like GitHub Copilot and CodeLlama exemplify this shift,
embedding AI deeply into the coder’s toolkit.

Broad Progress: Significant advancements span code generation,
test suite creation, and code analysis, driven by cutting-edge research
and industry adoption.

Achievements include real-time suggestions, high-coverage testing
(e.g., Codex’s JUnit tests), and sophisticated bug detection, as
evidenced by studies like Zhang et al. (2023).
These developments reduce time-to-market and elevate software quality
across diverse domains.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 59 / 62

Conclusion II

Persistent Challenges: Safety, correctness, and ethical concerns
remain critical hurdles requiring ongoing attention.

Issues like backdoors, hallucinations, and training data biases pose risks
to reliability and fairness.
Addressing these demands robust mitigation strategies (e.g., fuzzing,
diverse datasets) and ethical frameworks.

Future Horizons: The path forward lies in hybrid approaches and
advanced reinforcement learning, promising even greater capabilities.

Combining LLMs with static analysis or formal methods can filter
errors and boost robustness.
Techniques like RLHF, DPO, and execution feedback, alongside
agentification, pave the way for autonomous, intelligent coding
assistants.
Vision: A future where LLMs orchestrate entire development cycles
with human oversight, balancing innovation with responsibility.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 60 / 62

References I

Vaswani et al., ”Attention is All You Need,” 2017.

Zhang et al., ”A Survey on Large Language Models for Software Engineering,” 2023.

Xu et al., ”Using Large Language Models to Generate JUnit Tests,” 2023.

Rasheed et al., ”A Tool for Test Case Scenarios Generation Using LLMs,” 2024.

Fang et al., ”Large Language Models for Code Analysis,” 2024.

Li et al., ”When Software Security Meets LLMs,” 2024.

”Foundational Challenges in Assuring Alignment and Safety of LLMs,” n.d.

Fan et al., ”LLMs for Software Engineering: Survey,” 2023.

Zhang et al., ”CodeAgent: Enhancing Code Generation,” 2024.

Huang et al., ”AgentCoder: Multi-Agent Code Generation,” 2023.

Zhang et al., ”Planning with LLMs for Code Generation,” 2023.

Li et al., ”Formal-LLM: Integrating Formal and Natural Language,” 2024.

Apple ML Research, ”CodeAct: LLM Agent for Code,” 2024.

Qiao et al., ”TaskWeaver: A Code-First Agent Framework,” 2023.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 61 / 62

References II

Chen et al., ”Evaluating LLMs Trained on Code,” 2021.

Li et al., ”AlphaCode: Competitive Programming with LLMs,” 2022.

Strubell et al., ”Energy and Policy Considerations,” 2019.

Roziere et al., ”Unsupervised Translation of Programming Languages,” 2020.

Julien Perez Language Models and Software Development: Multiple Opportunities and ChallengesMarch 29, 2025 62 / 62

	Introduction
	Fundamentals of LLMs
	Recent Developments in Programming
	Advanced Techniques and Future Directions
	Safety, Ethics, and Challenges
	LLMs as a Programming Paradigm
	Conclusion

